Metals in Orthopedic Use

Titanium is the 9th most common element in the crust of earth, where it forms oxidic minerals (ilmenite, rutile). The pure element is very reactive; it’s the sole element that burns in nitrogen. Though, the metal quickly becomes coated with an oxide layer, making it resistant to most chemicals and physiologically inert. Titanium is utilized for making orthopaedic implants in 2 forms: commercially pure and a range of alloys.

Titanium-aluminum-vanadium alloy (ASTM F-136) is generally known as Ti6A14V. This alloy is broadly used to manufacture implants. Impurities such as hydrogen, oxygen and nitrogen tend to make it brittle, which describes why only minimal amounts are acceptable in titanium alloys utilized in surgical implants. ASTM F-136 limits the oxygen concentration to a particularly low level of 0.13%, referred as the ELI (extra low interstitial) grade. Limiting the extent of dissolved oxygen improves the material’s mechanical properties, mainly increasing its fatigue life. Aluminium stabilizes the alpha material’s form while vanadium stabilizes the beta form. Combination of both components forms a two-phase alloy with good strength properties and one that may be heat treated. Ti6A14V ELI is often used for making orthopedic implants

https://www.siiora.com/blogs/metals-in-orthopedic-use/




Comments

Popular posts from this blog

What to do After Joint Replacement Surgery?

What Are the Common Applications of Cannulated Screws in Fracture Fixation?

Cable Locking Plate System: Advantages for Faster Fracture Fixation